Research & Analysis
ZHANG Rongfa, HAO Ning, LIU Chuanliang, YANG Bobin, LIU Jia, ZHANG Tianbo
Adiabatic compressed air energy storage system has the characteristics of large capacity, long-term performance, safety, stability, and flexibility. In this type of energy storage system, the heat exchangers, as key components, have particularly important impact on system efficiency. Therefore, by establishing an adiabatic compressed air energy storage thermal system model, the impact of heat exchanger final temperature difference and air side pressure drop on system efficiency was analysed, and the cost of heat exchangers was comprehensively evaluated. Results show that, the increase of the upper final temperature difference of heat exchangers can lead to a decrease in system efficiency, and the lower final temperature difference should be matched with the upper final temperature difference in practical engineering design. Compared to high-pressure heat exchangers, the air side pressure drop of low-pressure heat exchangers has a greater impact on system efficiency. The smaller the final temperature difference and pressure drop of the heat exchangers, the higher the system efficiency, but the higher the equipment cost. Therefore, there is an optimal combination of final temperature difference and pressure drop to minimize the cost of the heat exchangers while meeting the system efficiency requirements.